Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/jallcom

Interstitial solid solution $Hf_5Ga_xSn_3$ (x = 0-1)

I. Voznyak^{a,*}, Ya. Tokaychuk^a, V. Hlukhyy^b, T.F. Fässler^b, R. Gladyshevskii^a

^a Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya St. 6, 79005 Lviv, Ukraine ^b Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany

ARTICLE INFO

Article history: Received 30 August 2011 Received in revised form 22 September 2011 Accepted 23 September 2011 Available online 1 October 2011

Keywords: Hafnium Gallium Tin X-ray diffraction Crystal structure Solid solution

1. Introduction

The structure type Mn_5Si_3 (Pearson symbol *hP*16, space group $P6_3/mcm$) [1] is widespread among the structures of binary intermetallic compounds M_5X_3 formed by transition metals with *p*-block elements of group IV (Si, Ge, Sn) [2]. The main feature of this structure is the existence of octahedral interstices that can be occupied by interstitial atoms. The octahedra (trigonal antiprisms) share atoms and form columns along [001]. In the case when all the interstices are fully occupied, the structure type Ti₅Ga₄ (*hP*18, *P*6₃/*mcm*) [3,4], or its ordered derivative Hf₅CuSn₃ (*hP*18, *P*6₃/*mcm*) [5], is realized.

The binary system Hf–Sn is characterized by the formation of the phases Hf₅Sn₃ and Hf₅Sn₄ crystallizing with Mn₅Si₃ and Ti₅Ga₄ structure types, respectively. The Hf₅Sn₃ binary compound with Mn₅Si₃-type structure is formed incongruently at 1900 °C, whereas the type and temperature of the formation of Hf₅Sn₄ with Ti₅Ga₄-type structure was not established [6]. The crystal structure of Hf₅Sn₃ was first determined in [7] (*h*P16, *P*6₃/*mcm*, *a* = 8.376, *c* = 5.737 Å). The existence of the binary compound Hf₅Sn₄ was reported in [4,5] (*h*P18, *P*6₃/*mcm*, *a* = 8.695, *c* = 5.875 Å).

The interstitial chemistry of isostructural Zr_5Sn_3 (structure type Mn_5Si_3) was described in [8]. The formation and crystal structures of stoichiometric Zr_5XSn_3 phases (X=B, C, N, O, Al, Si, P, S, Cu,

E-mail address: iravoznyak@gmail.com (I. Voznyak).

ABSTRACT

Formation of an interstitial solid solution $Hf_5Ga_xSn_3$ (x=0-1) based on the binary compound Hf_5Sn_3 (structure type Mn_5Si_3 , Pearson symbol hP16, space group $P6_3/mcm$, a=8.36562(6), c=5.70775(4)Å from X-ray powder diffraction) was established at 600 °C. The crystal structure (structure type Hf_5CuSn_3 , ordered derivative of Ti_5Ga_4 , hP18, $P6_3/mcm$) was refined on X-ray single-crystal diffraction data for three compositions: $Hf_5Ga_{0.16(3)}Sn_3$ (a=8.3288(12), c=5.6988(11)Å), $Hf_5Ga_{0.53(2)}Sn_3$ (a=8.4205(12), c=5.7655(12)Å) and Hf_5GaSn_3 (a=8.5564(12), c=5.7859(12)Å). The Ga atoms occupy Wyckoff position 2b at the centres of Hf_6 octahedral interstices.

© 2011 Elsevier B.V. All rights reserved.

Zn, Ga, Ge, Sn, As, Se) have also been reported in [8]. The structure was discussed in terms of incorporation of X-atoms into the chains of cofacial Zr_6 octahedra in the parent Mn_5Si_3 -type structure. The crystal structure of the Ga-containing phase was studied by X-ray single-crystal and powder diffraction. The variation of the cell parameters and refined interstitial occupancies indicate the formation of a solid solution. However, its range or the structure evolution within it was not investigated, since the authors focused on the stoichiometric composition Zr_5GaSn_3 observed at 1000 °C.

Due to the close similarity between hafnium and zirconium it seemed of interest to investigate the effect of the insertion of gallium atoms into the structure of the binary compound $H_{5}Sn_{3}$. The present article is devoted to the investigation of the solubility of Ga in $H_{5}Sn_{3}$ at 600 °C and a discussion of the structural changes occurring within the interstitial solid solution $H_{5}Ga_{x}Sn_{3}$ (x=0-1).

2. Experimental

Alloys of the binary system Hf–Sn and the ternary system Hf–Ga–Sn were synthesized from the elements (purity >99.9 wt.%) by arc melting in a water-cooled copper crucible under purified argon, using Ti as a getter and a tungsten electrode. The ingots were wrapped into Ta foil and annealed at $600 \,^{\circ}$ C in quartz ampoules under vacuum for 1 month and subsequently quenched in cold water. The weight losses during the preparation of the samples were less than 1% of the total mass, which was 1g for each alloy. In addition a sample of composition Hf_{62.5}Sn_{37.5} (in at.%) was synthesized by induction melting.

Phase analysis was carried out using X-ray powder diffraction data collected on a diffractometer DRON-2.0M (Fe K α -radiation, λ = 1.93801 Å) in the angular range $20^{\circ} \leq 2\theta \leq 120^{\circ}$ with the step 0.05°. X-ray powder diffraction data for Hf_{62.5}Sn_{37.5} were collected at room temperature on a STOE Stadi P diffractometer equipped with a linear detector (Cu K α_1 radiation, λ = 1.54056 Å, range $10^{\circ} \leq 2\theta \leq 110^{\circ}$, step

^{*} Corresponding author. Tel.: +380 322 394 506.

^{0925-8388/\$ -} see front matter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.jallcom.2011.09.075

Fig. 1. Experimental (dots), calculated (line) and difference between experimental and calculated (bottom) X-ray powder diffraction patterns of the sample $H_{f_{62.5}}Sn_{37.5}$ (Cu K α -radiation). Vertical bars indicate the positions of reflections for the $H_{f_5}Sn_3$ compound (1) and Hf (2).

0.01°). The crystal structure of the binary compound Hf₅Sn₃ was refined by the Rietveld method, starting from coordinates reported in [7]. The profile and structural parameters were refined using the FullProf Suite program package [9]. In the final refinement cycles 16 parameters were allowed to vary: sample shift, scale factor, two cell parameters, six profile parameters (pseudo-Voigt profile), two positional parameters, three atomic displacement parameters and one texture parameter. The Hf₅Sn₃ sample contained, in addition, 3.29(5) wt.% of a secondary phase, Hf, for which only the scale factor was included in the final refinement. The profile parameters for Hf were first refined and then kept fixed in the final cycles of the refinement. The back-ground was defined using the Fourier filtering technique. Experimental, calculated and difference powder diffraction patterns of the sample of composition Hf_{62.5}Sn₃, are listed in Table 1.

Single crystals were extracted from alloys of nominal compositions Hf₆₁Ga₂Sn₃₇, Hf₅₉Ga₆Sn₃₅ and Hf_{55.6}Ga_{11.1}Sn_{33.3}. They were mounted on glass fibers and X-ray diffraction data were collected in oscillation mode at room temperature on a Stoe IPDS-IIT diffractometer with graphite monochromatized Mo Kα radiation ($\lambda = 0.71073$ Å). Numerical absorption corrections were applied using X-Shape/X-Red software [10]. No significant variations of the intensities were observed during the data collections. Full-matrix least-squares refinements of the positional and anisotropic displacement parameters were performed on F^2 using the SHELXL-97 program [11]. For the single crystal of composition Hf₅GaSn₃ the occupancy of the G as ite was first refined (1.00(2)) and then fixed in the final refinement cycles to 1, whereas the occupancy parameters for other two compositions were allowed to

Table 1

Experimental details and crystallographic data for Hf_5Sn_3 .

Formula weight M _r	1248.58
Structure type	Mn ₅ Si ₃
Pearson symbol	hP16
Space group	P6 ₃ /mcm
Unit-cell parameters	
<i>a</i> , Å	8.36562(6)
<i>c</i> , Å	5.70775(4)
Cell volume V, Å ³	345.933(4)
Formula units per cell Z	2
Density D_X , g cm ⁻³	11.987
Preferred orientation: value/[direction]	0.9872(8)/[001]
Scanning mode	$\theta/2\theta$
Range 2θ ,°	10-110
Step size,°	0.01
Scanning time per step, s	20
Profile parameters	
U	0.0597(17)
V	0.000(2)
W	0.0078(4)
Shape parameter	0.765(3)
Asymmetry parameters	0.015(5), 0.0125(6)
Reliability factors	
R _B	0.019
R _F	0.0203
Rp	0.0448
Rwp	0.0583
χ^2	2.41

vary. Experimental details and crystallographic data for the three single crystals from the interstitial solid solution $Hf_5Ga_xSn_3$ (x=0-1) are listed in Table 2.

3. Results and discussion

X-ray phase analysis of the binary alloys of the Hf–Sn system showed the formation of only one binary compound, Hf₅Sn₃, as a single phase in the concentration range 37.5-50 at.% Sn at 600 °C. The two-phase alloy of nominal composition Hf_{62.5}Sn_{37.5} contained the hexagonal phase with cell parameters *a* = 8.36562(6), *c* = 5.70775(4)Å and very small amounts of Hf, whereas all the samples with higher Sn content contained, in addition to the main phase Hf₅Sn₃, the binary compound HfSn₂ (CrSi₂ structure type, *hP*9, *P*6₂22 [7]). The refined cell parameters of the phase Hf₅Sn₃ are

Fig. 2. Unit cell of Hf₅GaSn₃ and coordination polyhedra of the atoms.

Table 2

Experimental details and crystallographic data for three single crystals from the interstitial solid solution $H_5Ga_xSn_3$ (x = 0-1).

Refine composition Hfs Gaussig)Sn3 Hfs Gaussig)Sn3 Hfs Gaussig)Sn3 Hfs Gaussig)Sn3 Formula weight M_r 1259,75 1285,55 1318.32 Structure type Hfs Gussins (ordered derivative of Tis Gaussig)Sn3 1285,55 1318.32 Pearson symbol $hP18$ - - - Space group $P6_3$ /mcm - - - Cell parameters - - - - - - q , Λ 8.3288(1) 8.4205(12) 8.5564(12) - - Cell volume V, λ^3 3.236(10) 354.03(10) 366.85(11) - - Density $D_{x,y}$ gcm ⁻³ 1.2.143 1.985 11.934 - - Scanning mode $e^{-0.5cillation}$ 1.934 -<				
Formula weight M _µ 1289,75 1285.55 1318.32 Structure type Hf ₂ CuSn ₃ (ordered derivative of Ti ₅ Ga.4) H H Pearson symbol hP18 - - Space group B/mm - - - Cell parameters - - - - - - a, A S288(12) S4205(12) S7555(12) - - Cell volume V, Å ³ 342.36(10) 354.03(10) 366.85(11) - - Density D _x , gcm ⁻³ 12.143 11.985 11.934 - - Absorption coefficient μ, mm ⁻¹ 43.323 42.603 41.960 - - Absorption correction Analytical method - <td>Refined composition</td> <td>$Hf_5Ga_{0.16(3)}Sn_3$</td> <td>$Hf_5Ga_{0.53(2)}Sn_3$</td> <td>Hf5GaSn3</td>	Refined composition	$Hf_5Ga_{0.16(3)}Sn_3$	$Hf_5Ga_{0.53(2)}Sn_3$	Hf5GaSn3
Structure type HGsUSn3 (ordered derivative of Ti ₂ Ga.) Pearson symbol hP18 Pearson symbol hP18 Space group P63/mcn Cell parameters	Formula weight M _r	1259.75	1285.55	1318.32
Pears symbol Ph18 space group Po_3/mc space group Po_3/mc c.l Po_3/mc c.l Po_3/mc c.l Po_3/mc c.l Po_3/mc c.l Po_3/mc Cell volume V. Å ³ Po_3/mc Cell volume V. Å ³ Po_3/mc Density P_x gcm ⁻³ Po_3/mc Density P_x gcm ⁻³ Po_3/mc Absorptio coefficien μ , mm ⁻¹ Po_3/mc Absorptio coreficion Po_3/mc Po_3/mc	Structure type	Hf ₅ CuSn ₃ (ordered derivative of Ti ₅ Ga ₄)		
Space group P63/mcm Cell parameters	Pearson symbol	hP18		
Cell parameters Use of the second seco	Space group	P6 ₃ /mcm		
a, Å S3288(12) 8.4205(12) 8.5564(12) c, Å 5.6988(11) 5.7655(12) 5.7859(12) Cell volume V, Å ³ 342.36(10) 354.03(10) 366.85(11) Formula units per cell Z 2 - - Density D_x , g cm ⁻³ 12.143 11.985 11.934 Absorption coreficient μ , mm ⁻¹ 43.323 42.603 41.960 Scanning mode φ -Oscillation - - Absorption correction Analytical method - - No. of reflections - - - - Measured 5005 3495 4612 - Independent 162 145 0422 - Reliability factor R_{int} 0.0812 0.0446 0.0422 - Reliability factors - - 10 $\leq h \leq 0.1, -10 \leq k \leq 10, -72 < 25.94$ 25.94 27.49 - No. of reflections used in refinement 162 0.0206 0.0163 0.0259 S 1.494 1.600	Cell parameters			
c, Å5,6988(11)5,7655(12)5,7859(12)Cell volume V, ų342.36(10)364.03(10)366.85(11)Formula units per cell Z2Density $D_{X,g}$ gm^312.14311.98511.934Absorption coefficien μ, mm^{-1} 43.32342.60341.960Scanning mode φ -Oscillation40.00041.960Mosorption correctionAnalytical method5765 (12)46.12No. of reflectors162349546.12Independent162145175With $F > 2\sigma(F)$ 1620.04460.0422Range of h, k, l $-10 \le h \le 10, -7 \le l \le 7$ $-10 \le h \le 9, -10 \le k \le 10, -6 \le l \le 6$ $-11 \le h \le 11, -7 \le l \le 6$ $\mu_{max}, ^{-1}$ 0.01840.02060.0163 0.0259 k^R 0.04600.04360.0259 5 No. of reflections used in refinement162145175No. of reflections used in refinement1621451412No. of reflections used in refinement1621451412No. of reflections used in refinement16214515No. of reflections used in refinement1621451412No. of reflections used in refinement151514Weighting scheme ($P_{e_1}^{-2} + 2P_{e_1}^{-2}$) $w = 1/[\sigma^2(F_{e_1}^2) + (0.0064P)^2 + 8.8221P]w = 1/[\sigma^2(F_{e_1}^2) + 1.3205P]w = 1/[\sigma^2(F_{e_1}^2) + (0.0102P)2 + 1.370P]Residual electron densityL_{256}1.6081.6011.515Exituation coefficient$	<i>a</i> , Å	8.3288(12)	8.4205(12)	8.5564(12)
Cell volume V, ų 342.36(10) 354.03(10) 366.85(11) Formula units per cell Z 2	<i>c</i> , Å	5.6988(11)	5.7655(12)	5.7859(12)
Formula units per cell Z 2 Density $D_{X,g}$ g cm ⁻³ 12.143 11.985 11.934 Absorption coefficient μ , mm ⁻¹ 43.323 42.603 41.960 Scanning mode φ -Oscillation 41.960 Absorption correction Analytical method 500 500 No. of reflections 5005 3495 4612 Independent 162 145 175 Reliability factor R_{int} 0.0812 0.0446 0.0422 Range of h, k, l $-0 \le h \le 10, -7 \le l \le 7$ $-10 \le h \le 9, -10 \le k \le 10, -6 \le l \le 6$ $-11 \le h \le 11, -7 \le l \le 6$ θ_{max} , $^{\circ}$ 27.43 25.94 27.49 27.49 Reliability factors $(1 + 9 \le 10, -10 \le k \le 10, -7 \le l \le 7)$ 29.94 27.49 29.94 k^R 0.0406 0.0420 21.49 21.49 21.49 k^R 0.0184 0.0206 0.0163 21.49 21.49 k^R 0.0466 0.0422 21.49 21.49 21.49 $k^$	Cell volume V, Å ³	342.36(10)	354.03(10)	366.85(11)
$ \begin{array}{cccc} {\rm Density} \ b_{X} \ {\rm g} {\rm cm}^{-3} & 12.143 & 11.985 & 11.934 \\ {\rm Absorption coefficient} \ \mu, {\rm mm}^{-1} & 43.323 & 42.603 & 41.960 \\ {\rm Scanning mode} & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Formula units per cell Z	2		
Absorption coefficient μ , mm ⁻¹ 43.323 42.603 41.960 Scanning mode φ -0scillation Absorption correction Analytical method No. of reflections Measured 5005 3495 4612 Independent 162 145 175 With $F>2\sigma(F)$ 162 0.0446 0.0422 Range of h, k, l $-10 \le h \le 10, -10 \le k \le 10, -7 \le l \le 7$ $-10 \le h \le 9, -10 \le k \le 10, -6 \le l \le 6$ $-11 \le h \le 11, -11 \le k \le 11, -7 \le l \le 6$ θ_{max} , $^{\circ}$ 0.0184 0.0206 $0.11 \le h \le 11, -7 \le l \le 6$ g_{max} , $^{\circ}$ 0.0406 0.0436 0.0259 S 1.494 1.600 1.412 No. of reflections used in refinement 15 15 14 Weighting scheme ($P = (F_0^2 + 2F_0^2)/30$ $w = 1/[\sigma^2(F_0^2) + (0.0064P)^2 + 8.8221P]$ $w = 1/[\sigma^2(F_0^2) + 12.8295P]$ $w = 1/[\sigma^2(F_0^2) + (0.0102P)2 + 1.3790P]$ Reiduil electron density $\Delta \rho_{min}, e^{\Lambda^{-3}}$ 1.256	Density D_X , g cm ⁻³	12.143	11.985	11.934
Scanning mode φ -Oscillation Absorption correction Analytical method No. of reflections No. No. of reflections 5005 Independent 5005 Independent 162 No. br 2 $\sigma(F)$ 162 Reliability factor R_{int} 0.0812 $\Theta_{max,\circ}$ $-10 \le h \le 10, -10 \le k \le 10, -7 \le l \le 7$ $P(A = A = A)$ $-11 \le h \le 11, -11 \le k \le 11, -7 \le l \le 6$ $\phi_{max,\circ}$ 27.49 Reliability factors -7.43 $k R$ 0.0466 $v R$ 0.0466 $v R$ 0.0406 $v R$ 1.494 $v R$ 1.600 $v R$ 1.494 $v R$ $v R = 1/[\sigma^2(F_0^2) + (0.0064P)^2 + 8.8221P]$ $v R$ $v R = 1/[\sigma^2(F_0^2) + (0.0012P) + 1.379P]$ $v R$ $v R^{-3}$ $v R$ 1.256	Absorption coefficient μ , mm $^{-1}$	43.323	42.603	41.960
Absorption correction Analytical method No. of reflections 5005 4612 Independent 162 145 175 With $F > 2\sigma(F)$ 162 0.0446 0.0422 Range of h, k, l 0.0812 0.0446 0.0422 Range of h, k, l 0.0812 -10 $\leq h \leq 9, -10 \leq k \leq 10, -6 \leq l \leq 6$ $-11 \leq h \leq 11, -11 \leq k \leq 11, -7 \leq l \leq 6$ θ_{max}, \circ 0.0184 0.0206 $-11 \leq h \leq 11, -11 \leq k \leq 11, -7 \leq l \leq 6$ W^R 0.0184 0.0206 0.0163 W^R 0.0406 0.0436 0.0290 \sqrt{P} 0.197 15 14 \sqrt{P} 15 14 15 \sqrt{P} \sqrt{P} \sqrt{P} \sqrt{P} \sqrt{P} \sqrt{P} \sqrt{P} \sqrt{P} \sqrt{P}	Scanning mode	φ -Oscillation		
$\begin{split} $ Nc. of reflections \\ Measured $ 5005 $ 0505 $ 3495 $ 4612 $ 4612 $ 1005 $ 0505 $$	Absorption correction	Analytical method		
Measured500534954612Independent162145175With $F > 2\sigma(F)$ 162145175Reliability factor R_{int} 0.08120.04460.0422Range of h, k, l $-10 \le h \le 10, -10 \le k \le 10, -7 \le l \le 7$ $-10 \le h \le 9, -10 \le k \le 10, -6 \le l \le 6$ $-11 \le h \le 11, -11 \le k \le 11, -7 \le l \le 6$ θ_{max} ,° 27.43 25.94 27.49 Reliability factors vR 0.01840.02060.0163 wR 0.04060.04360.0259 S 1.4941.6001.412No. of refined parameters151514Weighting scheme ($P = (F_0^2 + 2F_c^2)/3$) $w = 1/[\sigma^2(F_0^2) + (0.0064P)^2 + 8.8221P]$ $w = 1/[\sigma^2(F_0^2) + 1.3790P]$ Residual electron density $w = 1/[S^2(F_0^2) + (0.0064P)^2 + 8.8221P]$ $w = 1/[S^2(F_0^2) + 1.28295P]$ $w = 1/[S^2(F_0^2) + (0.0102P)2 + 1.3790P]$ Residual electron density $u = 1/[S^2(F_0^2) + (0.0064P)^2 + 8.8221P]$ $w = 1/[S^2(F_0^2) + 1.28295P]$ $w = 1/[S^2(F_0^2) + (0.0102P)2 + 1.3790P]$ Residual electron density $u = 1/[S^2(F_0^2) + 1.38295P]$ $u = 1/[S^2(F_0^2) + (0.0102P)2 + 1.3790P]$ Residual electron density $u = 1/[S^2(F_0^2) + 1.38295P]$ $u = 1/[S^2(F_0^2) + (0.0102P)2 + 1.3790P]$ Residual electron density $u = 1/[S^2(F_0^2) + 1.380P]$ $u = 1/[S^2(F_0^2) + 1.38P]$ Residual electron density $u = 1/[S^2(F_0^2) + 1.38P]$ $u = 1/[S^2(F_0^2) + 1.38P]$ Residual electron density $u = 1/[S^2(F_0^2) + 1.38P]$ $u = 1.515$ Residual electron density $u = 1.515$	No. of reflections			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Measured	5005	3495	4612
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Independent	162	145	175
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	With $F > 2\sigma(F)$	162	145	175
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Reliability factor R _{int}	0.0812	0.0446	0.0422
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Range of h, k, l	$-10 \le h \le 10, -10 \le k \le 10, -7 \le l \le 7$	$-10 \le h \le 9, -10 \le k \le 10, -6 \le l \le 6$	$-11 \le h \le 11, -11 \le k \le 11, -7 \le l \le 6$
Reliability factorsR0.01840.02060.0163wR0.04060.04360.0259S1.4941.6001.412No. of reflections used in refinement151514Weighting scheme ($P = (F_g^2 + 2F_c^2)/3)$ w = $1/[\sigma^2(F_g^2) + (0.0064P)^2 + 8.8221P]$ w = $1/[\sigma^2(F_g^2) + 12.8295P]$ w = $1/[\sigma^2(F_g^2) + (0.0102P)2 + 1.3790P]$ Residual electron density $\Delta \rho_{max}$, $e^{\dot{A}^{-3}}$ 1.2561.6081.061Extinction coefficient0.0041(3)0.0030(3)0.0059(2)	$ heta_{\max}$,°	27.43	25.94	27.49
$ \begin{array}{cccc} R & 0.0184 & 0.0206 & 0.0163 \\ wR & 0.0406 & 0.0436 & 0.0259 \\ \hline S & 1.494 & 1.600 & 1.412 \\ No. of reflections used in refinement & 162 & 145 & 175 \\ No. of refined parameters & 5 & 15 & 14 \\ Weighting scheme (P = (F_o^2 + 2F_c^2)/3) & w = 1/[\sigma^2(F_o^2) + (0.0064P)^2 + 8.8221P] & w = 1/[\sigma^2(F_o^2) + 12.8295P] & w = 1/[\sigma^2(F_o^2) + (0.0102P)2 + 1.3790P] \\ Residual electron density & & & & \\ \Delta \rho_{max}, e^{\dot{A}^{-3}} & 1.256 & 1.608 & 1.061 \\ \Delta \rho_{min}, e^{\dot{A}^{-3}} & -1.729 & -1.138 & -1.515 \\ Extinction coefficient & 0.0041(3) & 0.0030(3) & 0.0059(2) \end{array} $	Reliability factors			
$ \begin{array}{cccc} wR & 0.0406 & 0.0436 & 0.0259 \\ \hline S & 1.494 & 1.600 & 1.412 \\ No. of reflection used in refinement & 162 & 145 & 175 \\ No. of refined parameters & 15 & 15 & 14 \\ Weighting scheme (P = (F_o^2 + 2F_c^2)/3) & w = 1/[\sigma^2(F_o^2) + (0.0064P)^2 + 8.8221P] & w = 1/[\sigma^2(F_o^2) + 12.8295P] & w = 1/[\sigma^2(F_o^2) + (0.0102P)2 + 1.3790P] \\ Residual electron density & & & \\ \Delta\rho_{max}, e^{\dot{A}^{-3}} & 1.256 & 1.608 & 1.061 \\ \Delta\rho_{min}, e^{\dot{A}^{-3}} & -1.729 & -1.138 & -1.515 \\ Extinction coefficient & 0.0041(3) & 0.0030(3) & 0.0059(2) \\ \end{array} $	R	0.0184	0.0206	0.0163
$\begin{array}{ccccc} S & 1.494 & 1.600 & 1.412 \\ \mbox{No. of reflections used in refinement} & 162 & 145 & 175 \\ \mbox{No. of refined parameters} & 15 & 15 & 14 \\ \mbox{Weighting scheme} (P = (F_o^2 + 2F_c^2)/3) & w = 1/[\sigma^2(F_o^2) + (0.0064P)^2 + 8.8221P] & w = 1/[\sigma^2(F_o^2) + 12.8295P] & w = 1/[\sigma^2(F_o^2) + (0.0102P)2 + 1.3790P] \\ \mbox{Residual electron density} & & & & \\ \mbox{$\Delta\rho_{max}, e^{\dot{A}^{-3}}$ & 1.256 & 1.608 & 1.061 \\ \mbox{$\Delta\rho_{max}, e^{\dot{A}^{-3}}$ & -1.729 & -1.138 & -1.515 \\ \mbox{Extinction coefficient} & 0.0041(3) & 0.0030(3) & 0.0059(2) \end{array}$	wR	0.0406	0.0436	0.0259
$\begin{array}{llllllllllllllllllllllllllllllllllll$	S	1.494	1.600	1.412
No. of refined parameters151514Weighting scheme $(P = (F_o^2 + 2F_c^2)/3)$ $w = 1/[\sigma^2(F_o^2) + (0.0064P)^2 + 8.8221P]$ $w = 1/[\sigma^2(F_o^2) + 12.8295P]$ $w = 1/[\sigma^2(F_o^2) + (0.0102P)2 + 1.3790P]$ Residual electron density $\Delta \rho_{max}, e^{A^{-3}}$ 1.2561.6081.061 $\Delta \rho_{min}, e^{A^{-3}}$ -1.729-1.138-1.515Extinction coefficient0.0041(3)0.0030(3)0.0059(2)	No. of reflections used in refinement	162	145	175
$ \begin{array}{ll} \mbox{Weighting scheme} (P = (F_o^2 + 2F_c^2)/3) & w = 1/[\sigma^2(F_o^2) + (0.0064P)^2 + 8.8221P] & w = 1/[\sigma^2(F_o^2) + 12.8295P] & w = 1/[\sigma^2(F_o^2) + (0.0102P)2 + 1.3790P] \\ \mbox{Residual electron density} & & & \\ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	No. of refined parameters	15	15	14
Residual electron density 1.256 1.608 1.061 $\Delta \rho_{max}, e^{A^{-3}}$ -1.729 -1.138 -1.515 Extinction coefficient 0.0041(3) 0.0030(3) 0.0059(2)	Weighting scheme $(P = (F_o^2 + 2F_c^2)/3)$	$w = 1/[\sigma^2(F_o^2) + (0.0064P)^2 + 8.8221P]$	$w = 1/[\sigma^2(F_o^2) + 12.8295P]$	$w = 1/[\sigma^2(F_o^2) + (0.0102P)2 + 1.3790P]$
$\Delta \rho_{max}, eÅ^{-3}$ 1.2561.6081.061 $\Delta \rho_{min}, eÅ^{-3}$ -1.729-1.138-1.515Extinction coefficient0.0041(3)0.0030(3)0.0059(2)	Residual electron density			
$\Delta \rho_{min}$, eÅ-3-1.729-1.138-1.515Extinction coefficient0.0041(3)0.0030(3)0.0059(2)	$\Delta ho_{ m max}$, eÅ $^{-3}$	1.256	1.608	1.061
Extinction coefficient 0.0041(3) 0.0030(3) 0.0059(2)	$\Delta ho_{ m min}$, eÅ $^{-3}$	-1.729	-1.138	-1.515
	Extinction coefficient	0.0041(3)	0.0030(3)	0.0059(2)

slightly smaller than those reported in [7]. Similar cell parameters were reported in [12] (a=8.36, c=5.71Å). It was concluded that a phase with Mn₅Si₃-type structure exists at 600 °C, whereas the formation of a compound Hf₅Sn₄ (Ti₅Ga₄ structure type) was not observed at this temperature. The compound HfSn (FeSi structure type, cP8, P2₁3), reported previously [13], was also not observed.

The investigation of the interstitial solid solution $Hf_5Ga_xSn_3$ (x=0-1) was started from the refinement of the structural parameters for the Hf_5Sn_3 binary compound based on X-ray powder diffraction data. It was confirmed that it crystallizes with the hexagonal Mn_5Si_3 structure type. Atomic coordinates and isotropic (equivalent) displacement parameters in the structure of the binary Hf_5Sn_3 and for three compositions from the $Hf_5Ga_xSn_3$ solid solution (x=0.16, 0.53, 1) are listed in Tables 3 and 4. Anisotropic displacement parameters refined from X-ray single-crystal diffraction data are listed in Table 5.

The Ga atoms occupy Wyckoff position 2*b*, which is empty in the Mn_5Si_3 structure type, leading to the realization of the Hf_5CuSn_3 type of structure (ordered derivative of Ti_5Ga_4). The latter represents a filled-up variant of the Mn_5Si_3 type. A gradual increase of the Ga content in the samples leads to an increase of the occupancy of the position 2*b*, i.e. an interstitial solid solution is formed. Such inclusion of Ga atoms takes place up to the composition Hf_5GaSn_3 characterizing by full occupancy of the position 2*b*. Mutual replacement of Sn atoms and Ga atoms, i.e. the formation of substitution solid solution, was not observed. The cell parameters and the cell volume increase with increasing gallium content in the phase.

The content of the unit cell of Hf₅GaSn₃ and the coordination polyhedra of the different atom sites are shown in Fig. 2. The atoms of site Hf1 are coordinated by eleven atoms forming a defect anticubooctahedron of composition Hf1Sn₅Ga₂Hf₄, which can also be represented as a deformed pentagonal bipyramid of composition [Sn₅Ga₂] with four additional Hf atoms, or as a tricapped trigonal prism of composition [Sn₅Hf₄] with two additional Ga atoms. The atoms from the closest environment of sites Hf2 and Ga form Frank-Kasper polyhedra consisting of 14 atoms, Hf2Sn₆Hf₈ and GaSn₆Ga₂Hf₆, respectively. Hf2Sn₆Hf₈ can be described as a deformed hexagonal prism of composition $[Sn_6Hf_6]$ with two Hf atoms capping the base faces. <u>Ga</u>Sn₆Ga₂Hf₆ is a deformed rhombododecahedron formed by a [Sn₆Ga₂] cube and a [Hf₆] octahedron. The Sn atoms are coordinated by nine Hf atoms, two Sn and two Ga atoms forming a Frank-Kasper 13-vertex polyhedron of composition SnSn₂Ga₂Hf₉. It can be represented as a deformed anticubooctahedron with one additional atom. or as a tricapped trigonal prism of composition [Hf9] with four additional atoms. The coordination polyhedron for Sn atoms in the structure of Hf₅Sn₃ is pseudo Frank-Kasper 11-vertex polyhedron of composition SnSn₂Hf₉, which can be represented as defect icosahedron.

Interatomic distances and coordination numbers for each of the structures are listed in Table 6. The interatomic distances correlate with the sums of the atomic radii of the components (r_{Hf} = 1.564, r_{Sn} = 1.405 and r_{Ga} = 1.221 Å [14]) and are in good agreement with the distances in the structures of binary hafnium stannides and gallides. For all of the Hf₅Ga_xSn₃ compositions the shortest

Table 3

Atomic coordinates and isotro	pic displacement	parameters for Hf ₅ Sn ₃	(X-ray powder diffr	action data).
-------------------------------	------------------	--	---------------------	---------------

Site	Wyckoff position	x	у	Z	B _{iso} , Å ²
Hf1	6g	0.24167(6)	0	1/4	0.890(12)
Hf2	4 <i>d</i>	1/3	2/3	0	0.564(15)
Sn	6 <i>g</i>	0.60627(8)	0	1/4	0.588(15)

Table 4

Atomic coordinates, site occupancies and equivalent displacement parameters for Hf₅Ga_xSn₃ (X-ray single-crystal diffraction data).

Site	Wyckoff position	Occupancy	X	У	Z	U _{eq} , Å ²
Hf5Ga0.16(3)Sn3						
Hf1	6g	1	0.23603(9)	0	1/4	0.0090(3)
Hf2	4 <i>d</i>	1	1/3	2/3	0	0.0062(3)
Sn	6g	1	0.60380(14)	0	1/4	0.0073(3)
Ga	2b	0.16(3)	0	0	0	0.08(3)
Hf5Ga0.53(2)Sn3						
Hf1	6g	1	0.25522(15)	0	1/4	0.0185(4)
Hf2	4d	1	1/3	2/3	0	0.0086(4)
Sn	6g	1	0.60882(19)	0	1/4	0.0119(4)
Ga	2 <i>b</i>	0.53(2)	0	0	0	0.011(3)
Hf₅GaSn₃						
Hf1	6g	1	0.26806(5)	0	1/4	0.00560(16)
Hf2	4 <i>d</i>	1	1/3	2/3	0	0.00358(16)
Sn	6g	1	0.61101(8)	0	1/4	0.00411(19)
Ga	2 <i>b</i>	1	0	0	0	0.0027(4)

Table 5

Anisotropic displacement parameters ($Å^2$) for $Hf_5Ga_xSn_3$.

Site	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Hf5Ga _{0.16(3)} Sn3						
Hf1	0.0092(3)	0.0057(4)	0.0107(4)	0.0029(2)	0	0
Hf2	0.0076(3)	0.0076(3)	0.0034(4)	0.00380(17)	0	0
Sn	0.0062(4)	0.0063(6)	0.0094(5)	0.0032(3)	0	0
Ga	0.09(3)	0.09(3)	0.05(3)	0.045(16)	0	0
Hf5Ga0.53(2)Sn3						
Hf1	0.0270(5)	0.0114(5)	0.0118(5)	0.0057(3)	0	0
Hf2	0.0106(4)	0.0106(4)	0.0045(5)	0.0053(2)	0	0
Sn	0.0140(6)	0.0100(8)	0.0105(7)	0.0050(4)	0	0
Ga	0.011(3)	0.011(3)	0.011(4)	0.0057(17)	0	0
Hf₅GaSn₃						
Hf1	0.00553(19)	0.0051(2)	0.0060(2)	0.00254(12)	0	0
Hf2	0.00391(18)	0.00391(18)	0.0029(3)	0.00195(9)	0	0
Sn	0.0036(3)	0.0029(4)	0.0056(3)	0.00145(18)	0	0
Ga	0.0018(5)	0.0018(5)	0.0047(9)	0.0009(2)	0	0
Ga	0.0018(5)	0.0018(5)	0.0047(9)	0.0009(2)	0	

distances are between Hf1 and Ga (2.428 Å for $Hf_5Ga_{0.16(3)}Sn_3$). They are shorter than in the binary gallide Hf_5Ga_3 (2.725 Å), which also crystallizes with a Mn_5Si_3 -type structure [15]. However, these distances increase with increasing Ga content within the solid solution and at the composition Hf_5GaSn_3 (2.712 Å) they become similar to those in Hf_5Ga_3 .

The increase of the Ga content within the solid solution $Hf_5Ga_xSn_3$ has an influence on the interatomic distances and the coordination polyhedra. Insertion of Ga atoms into $[Hf1_6]$ octahedra (Fig. 3) leads to an expansion of the latter (the distances from the centre of the octahedron to the Hf1 vertices increase from 2.475 to 2.712 Å). The chain of GaHf_6 octahedra exhibits strong Hf1–Sn

interactions, whereas the interatomic distances Hf2–Sn increase. Similar behavior was reported for the isostructural phase Zr_5GaSn_3 [8]. The coordination number and polyhedron of the Hf1 site change when Ga is inserted. In the structure of binary Hf₅Sn₃ the coordination polyhedron is a 14-vertex deformed pentagonal prisms [Hf₁₀] with five additional Sn atoms capping two bases and three side faces, while in the structure of Hf₅GaSn₃ it is, as discussed above, an 11-vertex polyhedron (Fig. 4). The coordination numbers and polyhedron types of the other atoms do not change.

The structure of Hf_5GaSn_3 can also be described in terms of atom layers. The atoms are located in layers A at z = 0 and 1/2, and layers

Fig. 3. Columns of face-linked GaHf₆ octahedra running along [001].

Fig. 4. Coordination polyhedra of the site Hf1 in the structures of Hf_5Sn_3 (a) and Hf_5GaSn_3 (b).

Table 6

Interatomic distances (d) and coordination numbers (CN) of atoms for $Hf_5Ga_xSn_3$.

Atoms		<i>d</i> , Å				Coordination number	
		Hf ₅ Sn ₃	$Hf_5Ga_{0.16(3)}Sn_3$	$Hf_5Ga_{0.53(2)}Sn_3$	Hf5GaSn3		
Hf1	-2Ga	-	2.4278(7)	2.5877(11)	2.7116(5)	11-15	
	-Sn	3.0501(9)	3.0631(15)	2.977(2)	2.9344(9)		
	-2Sn	2.87703(12)	2.8752(10)	2.8965(13)	2.9504(7)		
	-2Sn	3.1245(4)	3.1462(8)	3.1018(10)	3.0724(6)		
	-2Hf1	3.5017(6)	3.4049(14)	3.7223(16) ^a	3.9727(6) ^a		
	-4Hf1	3.4974(2)	3.4617(7)	3.5957(9) ^a	3.6919(6) ^a		
	-4Hf2	3.5409(3)	3.5562(8) ^a	3.4978(9)	3.4831(5)		
Hf2	-2Hf2	2.8539(2)	2.8494(5)	2.8828(6)	2.8929(6)	14	
	-6Sn	2.9425(2)	2.9254(5)	2.9708(6)	3.0159(4)		
	-6Hf1	3.5409(3)	3.5559(7)	3.4978(9)	3.4831(5)		
Sn	-2Hf1	2.8770(7)	2.8752(10)	2.8965(13)	2.9504(7)	11-13	
	-4Hf2	2.9425(2)	2.9254(5)	2.9708(6)	3.0159(4)		
	-2Hf1	3.1245(4)	3.1462(8)	3.1018(10)	3.0724(6)		
	-Hf1	3.0501(9)	3.0631(15)	2.977(2)	2.9344(9)		
	-2Sn	3.3624(6)	3.333(1)	3.4160(13)	3.4609(7)		
	-2Ga	-	3.5943(7)	3.5955(9)	3.6291(5)		
Ga	-6Hf1	-	2.4278(7)	2.5877(11)	2.7116(5)	14	
	-2Ga	-	2.8494(5)	2.8828(6)	2.8929(6)		
	-6Sn	-	3.5943(7)	3.5955(9)	3.6291(5)		

^a Not included in the coordination polyhedra.

Layer A at z = 1, 1/2

Fig. 5. Projection of the structure of Hf₅GaSn₃ along [001] (top left) and [100] (top right). The atoms of layer B lie in the mirror plane at z = 1/4 (thin lines), layer B' at z = 3/4 (thick lines).

Fig. 6. View of the structure of Hf_5GaSn_3 along [001]. The $HfSn_6$ (dark) and $GaHf_6$ (light) octahedra are emphasized.

B (B') at z = 1/4 and 3/4, resulting in the stacking sequence ABAB' along the *c* axis (Fig. 5). The layers B and B' are identical, but B' is rotated by 60° (6-fold screw axis) with respect to B. The layer A contains regular hexagons of Hf atoms centred by Ga atoms, "Hf₂Ga", while the layer B contains distorted hexagons of Hf and Sn atoms and has the composition "Hf₃Sn₃". The atoms of the layers B and B' form octahedra around the atoms of the layer A: distorted HfSn₆ octahedra share edges in the plane (00 1), forming cavities in which the GaHf₆ octahedra are situated (Fig. 6). Along the direction [001] the HfSn₆ as well as the GaHf₆ octahedra are connected by common faces and form a 3D-framework and 1D-rods, respectively. Interestingly, atoms of the *d*-block element (Hf) centre octahedra formed by atoms of a *p*-block element (Sn) and vice versa, Ga atoms (*p*-block element) centre octahedra formed by Hf atoms (*d*-block element).

4. Conclusions

The binary compound Hf_5Sn_3 dissolves 11.1 at.% Ga forming an interstitial solid solution $Hf_5Ga_xSn_3$ (x = 0-1). The Ga atoms occupy $[Hf_6]$ octahedral interstices (Wyckoff position 2*b*) up to the composition Hf_5GaSn_3 , which represents a Hf_5CuSn_3 -type structure (ordered derivative of Ti_5Ga_4). The cell parameters and cell volume increase with increasing gallium content. The coordination number of the hafnium atoms in Wyckoff position 6*g* is reduced from 15 ($Hf1Sn_5Hf_{10}$ for Hf_5Sn_3) to 11 ($Hf1Sn_5Ga_2Hf_4$ for Hf_5GaSn_3).

Acknowledgements

This work was supported by the Ministry of Ukraine for Education and Science under the Grant no. 0109U002071 and by a Leonhard Euler stipendium of DAAD (I.V.).

References

- K. Åmark, B. Borén, A. Westgren, Metallwirtsch. Metallwiss. Metalltech. 15 (1936) 835–836.
- [2] P. Villars, K. Cenzual (Eds.), Pearson's Crystal Data, Crystal Structure Database for Inorganic Compounds (Release 2010/11), ASM International, Materials Park, OH, 2010.
- [3] M. Pötzschke, K. Schubert, Z. Metallkd. 53 (1962) 474-488.
- [4] K. Schubert, H.G. Meissner, M. Pötzschke, W. Rossteutscher, E. Stolz, Naturwissenschaften 49 (1962) 57.
- [5] W. Rieger, H. Nowotny, F. Benesovsky, Monatsh. Chem. 96 (1965) 232-241.
- [6] T.B. Massalski (Ed.), Binary Alloy Phase Diagrams, ASM International, Ohio,
- 1990.
- [7] H. Boller, H. Nowotny, A. Wittmann, Monatsh. Chem. 91 (1960) 1174–1184.
 [8] Y.U. Kwon, I.D. Corbett. Chem. Mater. 4 (1992) 1348–1355.
- [9] J. Rodriguez-Carvajal, Newsletter 26 (2001) 12–19.
- [10] X-Shape (Version 2.05), X-Red (Version 1.26) and IPDS Software (Version 2.92), Stoe & Cie, Darmstadt, 2000.
- [11] G.M. Sheldrick, SHELXS-97 and SHELXL-97, Programs for the Solution and Refinement of Crystal Structures, University of Göttingen, 1997; G.M. Sheldrick, Acta Crystallogr. A 64 (2008) 112–122.
- [12] I.A. Tsyganova, M.A. Tylkina, E.M. Savitskii, Russ. Metall. 3 (1971) 129-130.
- [13] O. Schob, E. Parthé, Acta Crystallogr. 17 (1964) 452–453.
- [14] J. Emsley, The Elements, Oxford University Press, 1997.
- [15] H. Boller, E. Parthé, Monatsh. Chem. 94 (1963) 225-226.